输入电压115-230VAC
电流0-5A
输出电压0-180VDC
适配电机直流电机
适用场合机械传动
材质不锈钢和铜
电机响应时间0.1秒
驱动器输出方式电压输出
驱动器电压24VDC
驱动器电流5A
MYCOM驱动器由于受到自身制造工艺的限制,如步距角的大小由转子齿数和运行拍数决定,但转子齿数和运行拍数是有限的,因此步进电机的步距角一般较大并且是固定的,步进的分辨率低、缺乏灵活性、在低频运行时振动,噪音比其他微电机都高,使物理装置容易疲劳或损坏。这些缺点使步进电机只能应用在一些要求较低的场合,对要求较高的场合,只能采取闭环控制,增加了系统的复杂性,这些缺点严重限制了步进电机作为优良的开环控制组件的有效利用。细分驱动技术在一定程度上有效地克服了这些缺点。
一般小型(低档)PLC具有逻辑运算、定时、计数等功能,对于只需要开关量控制的设备都可满足。
对于以开关量控制为主,带少量模拟量控制的系统,可选用能带A/D和D/A转换单元,具有加减算术运算、数据传送功能的增强型低档PLC。对于控制较复杂,要求实现PID运算 、闭环控制、通信联网等功能,可视控制规模大小及复杂程度,选用中档或PLC。但是中、PLC价格较贵,一般用于大规模过程控制和集散控制系统等场合。
IMS50-220-5962AC(BC)
IMS50-220-5992AC(BC)
IMS50-220-59132AC(BC)
ISD200-120L
ISD200-220L
PF244H-A(B)
PF266-A(B)
PF264-A(B)
PF268-A(B)
PF265-A(B)
RMS20-210
RMS20-211
RMS20-212

智能控制不依赖或不完全依赖控制对象的数学模型 ,只按实际效果进行控制 , 在控制中有能力考虑系统的不确定性和性 , 突破了传统控制必须基于数学模型的框架 。目前 , 智能控制在步进电机系统中应用较为成熟的是模糊逻辑控制 、网络和智能控制的集成 。
模糊控制就是在被控制对象的模糊模型的基础上 ,运用模糊控制器的近似推理等手段 ,实现系统控制的方法 。作为一种直接模拟人类思维结果的控制方式 , 模糊控制已广泛应用于工业控制领域 。与常规控制相比 ,模糊控制无须的数学模型 , 具有较强的鲁棒性 、自适应性 , 因此适用于非线性 、时变 、时滞系统的控制 。文献[ 16] 给出了模糊控制在二相混合式步进电机速度控制中应用实例 。系统为超前角控制 ,设计无需数学模型 ,速度响应时间短 。
IMS500-020L-535EA(B)
IMS500-020L-543AC(BC)
IMS500-020L-544AC(BC)
IMS500-020L-545AC(BC)
IMS500-120L-564AC(BC)
IMS500-120L-566AC(BC)
IMS500-120L-569AC(BC)
PEE533-A
PF564-AC
PF566-AC
PF569-AC
IMS500-020L
IMS500-120L
PCE5431-BC
PCE5441-BC
PCE5451-BC
PCE5641-BC
PCE5661-BC
PCE5691-BC
PCE5961-BC
PCE5991-BC
PCE59131-BC
PCE5641-ACM
PCE5661-ACM
PCE5691-ACM
PCE5961-ACM
PCE5991-ACM
PCE59131-ACM

GTS500-020-533A
GTS500-020-535A
PCE5991-AC
PCE59131-AC
PCE5692-AC
PCE5962-AC
PCE5992-AC
PCE59132-AC
PCE5961-AC
INS500-020

PF264-A
PF265-A
PF268-A
INS200-030L
INS200-230L
INS200-230L-243A
INS200-230L-244A
INS200-230L-245A
INS200-230L-264A
INS200-230L-265A
INS200-230L-268A
矢量控制是现代电机高性能控制的理论基础 ,可以改善电机的转矩控制性能 。它通过磁场定向将定子电流分为励磁分量和转矩分量分别加以控制 ,从而获得良好的解耦特性 ,因此 , 矢量控制既需要控制定子电流的幅值 ,又需要控制电流的相位 。由于步进电机不仅存在主电磁转矩 , 还有由于双凸结构产生的磁阻转矩 , 且内部磁场结构复杂 , 非线性较一般电机严重得多 , 所以它的矢量控制也较为复杂 。
//www.ha0618.com